Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ulker, Pinara; * | Özen, Nura | Abduleyeva, Günela | Köksoy, Sadib | Yaraş, Nazmic | Basralı, Filiza
Correspondence: [*] Corresponding author: Pinar Ulker, Department of Physiology, Akdeniz University, Medical Faculty, Kampus, 07070, Antalya, Turkey. Tel.: +90 2422496960; Fax: +90 2422274483; E-mail: ulkerpinar@akdeniz.edu.tr.
Abstract: BACKGROUND:Rho-kinase, an effector of the small GTPase RhoA, is known to be a novel inhibitory regulator of eNOS in endothelial cells under basal conditions and disease states. However, although RBC possesses active RhoA/Rho-kinase pathway, Rho-kinase mediated eNOS regulation has not been investigated in RBC, so far. OBJECTIVE:The aim of the present study is to investigate whether eNOS activity is regulated by Rho-kinase under basal conditions and to evaluate whether inhibition of this enzyme causes eNOS activation and intracellular NO production in RBC. METHODS:RBC packeds were isolated from healthy volunteers and resuspended in Hepes solution at a hematocrit of 0.01 l/l. Intracellular NO and Ca+2 levels and eNOS activation measured by flow cytometry in response to Rho-kinase inhibitors, fasudil and Y-27632, in the absence and presence of NOS, and PI3K inhibitors. RESULTS:Rho-kinase inhibitors fasudil and Y-27632 found to increase intracellular NO concentrations. These inhibitors also cause enhancement of intracellular Ca+2 and serine 1177 phosphorylated eNOS levels. Besides, although these responses have shown to be suppressed by NOS enzyme, PI3K inhibition had no effect on this mechanism. CONCLUSIONS:The results of the present study demonstrated that RBC eNOS enzyme activity is regulated by inhibitory Rho-kinase pathway under basal conditions and inhibition of this pathway enhances the activity of eNOS in RBC. This activation is mediated by both intracellular Ca+2 and Serine 1177 phosphorylated eNOS increment, with no contribution of AKT activation, in RBC. The mechanism we described here gives first evidences about Rho-kinase mediated eNOS regulation in RBC under basal conditions. This pathway could also be more important under disease states.
Keywords: Red blood cells, Rho-kinase, nitric oxide, nitric oxide synthase
DOI: 10.3233/CH-190578
Journal: Clinical Hemorheology and Microcirculation, vol. 72, no. 4, pp. 407-419, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl