Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected articles of the 14th International Congress of Biorheology and the 7th International Conference of Clinical Hemorheology, July 4–7, 2012, Istanbul, Turkey
Article type: Research Article
Authors: Roch, Toralf; | Kratz, Karl; | Ma, Nan; | Jung, Friedrich; | Lendlein, Andreas;
Affiliations: Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany | Helmholtz Virtual Institute - Multifunctional Materials for Medicine, Teltow and Berlin, Germany
Note: [] Corresponding author: Andreas Lendlein, Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany. E-mail: andreas.lendlein@hzg.de
Abstract: Dendritic cells (DC) have a pivotal role during inflammation. DC efficiently present antigens to T cells and shape the subsequent immune response by the secretion of pro- or anti-inflammatory cytokines and by the expression of co-stimulatory molecules. They respond to “danger signals” such as microbial products or fragments from necrotic cells or tissues, but were also described to be reactive towards biomaterials. However, how mechanical and physical properties of the subjacent substrate influences the DC activation is currently poorly understood. In this study micro patterned inserts prepared from polystyrene (PS) as well as from poly (ether imide) (PEI) with three different roughness levels of i) Rq = 0.29 μm (PS) and 0.23 μm (PEI); ii) Rq = 3.47 μm (PS) and 3.92 μm (PEI); and iii) Rq = 22.16 μm (PS) and 22.65 μm (PEI) were analyzed for their capacity to influence the activation of human monocytes derived DC. Since the DC were directly cultured in the inserts, the effects of the testing material alone could be investigated and influences from additional culture dish material could be excluded. The viability, the expression of the DC activation markers, and their cytokine/chemokine secretion were determined after the incubation with the different inserts in vitro. Both the PS and the PEI inserts did not influence the survival of the DC and their expression of co-stimulatory molecules. The expression of inflammatory cytokines was not altered by the PEI and PS inserts. However, the secretion of chemokines such as CCL2, CCL3, and CCL4 was influenced by the different roughness levels, indicating that material roughness has the capacity to modulate the DC phenotype. The data presented here will help to understand the interaction of DC with structured polymer surfaces. Biomaterial-induced immuno-modulatory effects mediated by DC may promote tissue regeneration or could potentially reduce inflammation caused by the implant material.
Keywords: Biomaterials, roughness, dendritic cells, cell culture devices
DOI: 10.3233/CH-131699
Journal: Clinical Hemorheology and Microcirculation, vol. 55, no. 1, pp. 157-168, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl