Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected Presentations held at the 35th Conference of the German Society for Clinical Microcirculation and Hemorheology, Mainz, Germany, 4-5 November, 2016
Guest editors: F. Jung and T. Gori
Article type: Research Article
Authors: Krüger-Genge, Annea | Jung, Friedricha; b; * | Fuhrmann, Rosemariec | Franke, Ralf-Peterc
Affiliations: [a] Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany | [b] Institute of Clinical Hemostaseology and Transfusion Medicine, University of Saarland, Germany | [c] Department of Biomaterials, Central Institute for Biomedical Engineering, University of Ulm, Ulm, Germany
Correspondence: [*] Corresponding author: F. Jung, Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany. Tel.: +49 03328 352 269; Fax: +49 03328 352 452; E-mail: friedrich.jung@hzg.de.
Abstract: BACKGROUND: Endothelial cells (EC) in vivo are strongly influenced by changes of the milieu exterieur. Under pathological conditions EC can become activated e.g. in hypoxic areas or during sepsis. In general, the endothelialization of implant materials is evaluated in vitro under physiological conditions. Though, in patients who receive implant materials pathological conditions are often present. An open question is therefore, how ECs seeded on a body foreign substrate behave in a pathologic microenvironment. In this in vitro study a microenvironment was created mimicking the conditions present in septic patients. To simulate this situation in vitro, serum of patients with septic shock was added to the culture medium of EC cultured on glass. The samples were sheared in a cone-plate rheometer (shear rate of 6 dyn/cm2) with subsequent analysis of the morphology, the microfilament organization and the shear resistance and compared to control cultures of EC without shock serum supplementation. Aim of the study was to investigate whether this in vitro model provides information about the functionality of an EC monolayer on a body foreign surface under pathological conditions. RESULTS: Septic conditions induced severe changes of the morphology of the adherent cells: there was a strong induction of stress fibers. In addition, lots of cells or cell groups were detached visible as denuded areas in the EC monolayer. After shear stress exposure only 28.7% of EC seeded in cell medium supplemented with serum of septic patients remained adherent (control cells: 96.8%). CONCLUSION: The study demonstrates that the microenvironment is of extreme importance for the behavior of EC and that in vivo pathologies can be simulated in vitro. This opens the possibility to evaluate new implant materials under physiological but more important also under certain pathological conditions - simulating the implant size and the disease of the host.
Keywords: Endothelial cells, in vitro, sepsis, shear rate
DOI: 10.3233/CH-168111
Journal: Clinical Hemorheology and Microcirculation, vol. 64, no. 3, pp. 383-389, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl