Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bursac, P.; | Arnoczky, S. | York, A.
Affiliations: Sports Medicine Group, RTI Biologics, Inc., Alachua, FL, USA | Laboratory for Comparative Orthopaedic Research, Michigan State University, East Lansing, MI, USA
Note: [] Address for correspondence: Dr. Predrag Bursac, RTI Biologics, Inc., 11621 Research Circle, Alachua, FL 32615, USA. Tel.: +1 386 418 8888, ext. 4163; Fax: +1 386 418 0342; E-mail: pbursac@rtix.com.
Abstract: The menisci of the knee play a significant role in the complex biomechanics of the joint and are critically important in maintaining articular cartilage health. While a general form–function relationship has been identified for the structural orientation of the extra-cellular matrix of the meniscus, the role of individual biochemical components has yet to be fully explored. To determine if correlations exist between the dynamic and static compressive modulus of human menisci and their major extra-cellular matrix constituents (collagen, glycosoaminoglycan and water content), 12 lateral and 11 medial menisci from 13 adult donors were examined. The results showed that in dynamic compression at high loading frequencies (0.1–1 Hz) the menisci behave as a rubber-like elastic material while at lower frequencies (0.01–0.03 Hz) significant viscous dissipation occurs. While regional variations in compressive moduli and extra-cellular matrix composition were observed, the magnitude of both dynamic and static compressive moduli were found to be insensitive to collagen content (p>0.4). However, this magnitude was found to significantly increase with increasing glycosaminoglycan content (p<0.001) and significantly decrease with increasing water content (p<0.001). The results of this study identify significant relationships between the viscoelastic behavior of the meniscus and its extra-cellular matrix composition.
Keywords: Viscoelasticity, GAG, collagen, lateral, medial, mechanics
DOI: 10.3233/BIR-2009-0537
Journal: Biorheology, vol. 46, no. 3, pp. 227-237, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl