Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kaliviotis, E. | Yianneskis, M.
Affiliations: Experimental and Computational Laboratory for the Analysis of Turbulence (ECLAT), Division of Engineering, King's College London, London, UK
Note: [] Address for correspondence: Prof. Michael Yianneskis, Division of Engineering, King's College London, Strand London, WC2R 2LS, UK. Tel.: +44 20 7848 2428; Fax: +44 20 7848 2932; E-mail: michael.yianneskis@kcl.ac.uk.
Abstract: The present work reports on an important feature of the fast response dynamics of blood flow observed after abrupt changes of the shearing conditions: distinctive peak values in conductance and light reflection/transmission have been observed at short times after the abrupt changes in the shearing conditions and have been attributed to red blood cell (RBC) disorientation and shape changes. Optical shearing microscopy results from the present study show that this peak is directly related to the inter-cellular or inter-aggregate spacing, quantified as the plasma gaps present in the captured images. In order to provide a more in-depth understanding of the structural characteristics of blood subjected to abrupt changes in the flow conditions, normal human blood samples at hematocrits of 45, 35, 25 and 10% were sheared at 100 s−1 and the shear then suddenly reduced to values decreasing from 60 to 0 s−1. Results from the present study agree qualitatively and quantitatively with results previously reported in the literature: the hematocrit and the magnitude of the final shear rate affect the magnitude of the peak values. The characteristic peak time was mostly influenced by the cell concentration. It is suggested that aggregation forces may play a part in the process of the fast response structural and spatial rearrangements of RBC.
Keywords: Aggregation dynamics, image analysis, inter-cellular spacing, deformation
DOI: 10.3233/BIR-2008-0514
Journal: Biorheology, vol. 45, no. 6, pp. 639-649, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl