Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Qiao, Aike; ; | Matsuzawa, Teruo
Affiliations: Center for Information Science, Japan Advanced Institute of Science and Technology, 923-1292, Japan | The College of Life Science and Medical Engineering, Beijing University of Technology, Beijing 100022, P.R. China
Note: [] Address for correspondence: Dr. Aike Qiao, The College of Life Science and Medical Engineering, Beijing University of Technology, Beijing 100022, P.R. China. Tel.: +8610 6739 6657; Fax: +8610 6739 2001; E-mail: qak@bjut.edu.cn.
Abstract: The effectiveness of femoral bypass grafts is correlated with the geometric configuration and hemodynamics of the bypass and the arteries. As an attempt to develop a new design for femoral bypass grafts, we present a novel geometric configuration for a symmetrically implanted 2-way bypass graft. In order to investigate how the symmetric 2-way bypass grafts affect the flow patterns through the anastomosis, physiologic blood flows in 1-way and 2-way models for a fully stenosed femoral bypass were simulated with the finite element method, and the hemodynamic factors in these models were studied. The temporal and spatial distributions of flow patterns and wall shear stresses in the vicinity of distal anastomosis during the cardiac cycle were analyzed. The results computed showed that the 2-way model has more preferable hemodynamics than the 1-way model in the distribution of flow patterns and wall shear stresses, and it may improve the flow conditions and decrease the probability of restenosis. However, the limitations of the 2-way bypass model may counteract the positive effects. More detailed hemodynamic studies are necessary to fully assess the viability of the 2-way bypass graft.
Keywords: Anastomosis, intimal hyperplasia, restenosis, wall shear stress, biomechanics
Journal: Biorheology, vol. 44, no. 2, pp. 103-124, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl