Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected papers of the 4th International Symposium on Mechanobiology of Cartilage and Chondrocyte, Budapest, 20–22 May, 2006
Article type: Research Article
Authors: Boschetti, Federica; | Gervaso, Francesca | Pennati, Giancarlo | Peretti, Giuseppe M. | Vena, Pasquale | Dubini, Gabriele
Affiliations: Laboratory of Biological Structure Mechanics, Department of Structural Engineering, Politecnico di Milano, Italy | Orthopaedic Department, San Raffaele Hospital, Milan, Italy
Note: [] Address for correspondence: Federica Boschetti, PhD, LaBS, Dipartimento di Ingegneria Strutturale, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy. E-mail federica.boschetti@polimi.it.
Abstract: The mechanisms underlying the ability of articular cartilage to withstand and distribute the loads applied across diarthrodial joints have been widely studied. Experimental tests have been done under several configurations to reveal the tissue response to mechanical stimuli, and theoretical models have been developed for the interpretation of the experimental results. The experiments demonstrated that the tissue is non-linear with strain, both in tension and in compression, non-linear with direction of stimulus, anisotropic in tension and compression, non-homogeneous with depth, resulting in depth dependent mechanical properties, and presents fluid dependent and fluid independent viscoelasticity. None of the models up to now developed is able to describe the whole set of responses of such a complex tissue. The purpose of this study was to develop a combined experimental-numerical approach for the proper description of the cartilage response under confined and unconfined compression. We defined a series of experimental tests to be performed on disks of natural and engineered cartilage and we developed a numerical model for cartilage, based on the biphasic theory, which potentially includes the tension–compression non-linearity, the strain non-linearity and the fluid independent viscoelasticity. The model successfully simulated the confined and unconfined compression experiments performed on disks of natural and engineered cartilage, and was also used to identify parameters of difficult experimental evaluation, such as the collagen stiffness and the permeability. In conclusion, the use of our model in combination with biomechanical experimental testing seems a valuable tool to analyze the mechanical properties of natural cartilage and the biofunctionality of tissue engineered cartilage.
Keywords: Articular cartilage, tissue engineered cartilage, poroelastic modeling, compression tests, permeation
Journal: Biorheology, vol. 43, no. 3-4, pp. 235-247, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl