Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Fisher, T.C. | Van Der Waart, F.J. | Meiselman, H.J.
Affiliations: Department of Physiology and Biophysics, University of Southern California School of Medicine, 2025 Zonal Avenue, Los Angeles, CA 90033, USA FAX: (213) 342-2283
Abstract: Much attention has been paid to the study of blood flow in long, narrow tubes. While the influence of tube diameter and driving pressure have been examined in detail, the influence of suspending phase viscosity has generally been assumed only to affect the blood viscosity in a linearly proportional manner, hence the practice of normalizing apparent blood viscosity values by the suspending phase viscosity to give a relative viscosity (e.g., Pries et al., 1992). While this assumption is probably valid for long tubes, it apparently does not hold for blood flow in short tubes (and by extension also for flow in short or branching capillary segments in vivo) in which RBC deformation plays a more significant role. In this paper we present a series of experiments using the Cell Transit Analyzer (CTA) in which the influence of driving pressure and suspending phase viscosity on RBC passage through short, narrow tubes has been systematically evaluated. Over the range studied (1 to 10 cm water), the influence of driving pressure was found to be unremarkable, in that RBC velocity scaled directly and linearly with pressure. This finding is consistent with previous studies. However, a distinct intercept was observed in the linear relationship between RBC pore transit time and suspending phase viscosity, which presumably arises as a consequence of RBC deformation either at the pore entrance or within the pore. Two simple mathematical models for the suspending phase-viscosity/transit-time relationship were considered. The results show that making CTA measurements over a range of suspending medium viscosities is a simple and practical way to obtain additional information about RBC mechanical properties.
Keywords: Red blood cells, micropores, viscosity, dextran
DOI: 10.3233/BIR-1996-33204
Journal: Biorheology, vol. 33, no. 2, pp. 153-168, 1996
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl