Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Goldsmith, H.L.a; * | Kaufer, E.S.b | McIntosh, F.A.b
Affiliations: [a] McGill University Medical Clinic, Montreal General Hospital, Montreal, Canada H3G IA4 | [b] Department of Medicine, McGill University, Montreal, Canada H3G IA4
Correspondence: [*] Please address correspondence to: Dr. H.L. Goldsmith, Room C1O-148, Montreal General Hospital, Montreal, Quebec H3G 1A4, Canada.
Abstract: Both chemical and physical effects of red cells are known to play a role in the adenosine diphosphate (ADP)-induced aggregation of human platelets in sheared blood. Using a previously described double infusion technique (Bell et al., 1989a), we studied the effect of increasing hematocrit from 10 to 60% on the rate and extent of platelet aggregation with 0.2 µM ADP in citrated whole blood undergoing tube flow. Blood and agonist were rapidly mixed in a small chamber and the suspensions flowed through lengths of 1.19 mm-diameter polyethylene tubing at mean transit times <t> from 0.2 to 42.8 s at a mean tube shear rate <G> = 335 s-l. Effluent was collected into 0.5% glutaraldehyde, the red cells removed by centrifugation through Percoll, and all single platelets and aggregates in the volume range 1–105 µm3 counted and sized using an aperture impedance counter. Both the initial rate (over the first 8.6 s) and the extent of aggregation with time increased with increasing mean hematocrit up to 35.8%, being significantly greater than in citrated plasma (cPRP). However, at 61.5% hematocrit, the extent of aggregation decreased markedly to a level close to that in cPRP. We also studied the effect of washed red cells at 39% hematocrit on the aggregation of washed platelets in Tyrodes-albumin fibrinogen-free suspensions. It had previously been shown that, at <G> ⩾ 335 s-l, washed platelets in platelet-rich Tyrodes (PRT) aggregated with 0.7 µM ADP. We found that red cells markedly increased the extent of aggegation from that in PRT, and promoted the formation of large aggregates, absent in PRT. Spontaneous aggregation in whole blood or washed cell suspensions in the absence of added ADP at <t> = 42.8 s was < 10% of that in the presence of ADP. The results indicate that a physical effect of red cells, likely manifested as an increase in the efficiency of aggregate formation (Goldsmith et al., 1995), plays an important role at low and normal hematocrits; however, at high hematocrits, particle crowding impedes the formation of aggregates.
Keywords: Platelet aggregation, ADP, tube flow, red cells, hematocrit, fibrinogen
DOI: 10.3233/BIR-1995-32503
Journal: Biorheology, vol. 32, no. 5, pp. 537-552, 1995
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl