Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 3rd International Symposium on Mechanobiology of Cartilage and Chondrocyte. Brussels, May 16–17, 2003
Article type: Research Article
Authors: Martin, James A. | Brown, Thomas | Heiner, Anneliese | Buckwalter, Joseph A.
Affiliations: Department of Orthopaedics, University of Iowa, Iowa City, IA 52242, USA
Note: [] Address for correspondence: Joseph A. Buckwalter, 01008 Pappajohn Pavilion, Department of Orthopaedics, University of Iowa College of Medicine, Iowa City, IA 52242, USA. Tel.: +1 319 356 2595; Fax: +1 319 356 8999; E‐mail: joseph‐buckwalter@uiowa.edu.
Abstract: Joint injuries frequently lead to progressive joint degeneration that causes the clinical syndrome of post‐traumatic osteoarthritis. The pathogenesis of osteoarthritis remains poorly understood, but patient age is a significant risk factor for progressive joint degeneration. We have found that articular cartilage chondrocytes show strong evidence of senescence with increasing age, including synthesis of smaller more irregular aggrecans; increased expression of lysosomal beta‐galactosidase and telomere erosion; and decreased proteoglycan synthesis, response to the anabolic cytokine IGF‐I, proliferative capacity, and mitochondrial function. These observations help explain the strong association between age and joint degeneration, but they do not explain how joint injury increases the risk of joint degeneration in younger individuals. We hypothesized that excessive loading of articular surfaces due to acute joint trauma or post‐traumatic joint instability, incongruity or mal‐alignment increases release of reactive oxygen species, and that the increased oxidative stress on chondrocytes accelerates chondrocyte senescence thereby decreasing the ability of the cells to maintain or restore the tissue. To test this hypothesis, we exposed human articular cartilage chondrocytes from young adults to mechanical and oxidative stress. We found that shear stress applied to cartilage explants in a triaxial pressure vessel increased release of reactive oxygen species and oxidative stress induced chondrocyte senescence (as measured by expression of lysosomal beta‐galactosidase, nuclear and mitochondrial DNA damage and decreased mitochondrial function). These observations support the hypothesis that joint injury accelerates chondrocyte senescence and that this acceleration plays a role in the joint degeneration responsible for post‐traumatic osteoarthritis.
Journal: Biorheology, vol. 41, no. 3-4, pp. 479-491, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl