Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ando, J.a | Ohtsuka, A.a | Katayama, Y.a | Korenaga, R.a | Ishikawa, C.a | Kamiya, A.b
Affiliations: [a] Department of Cardiovascular Biomechanics, Hokkaido Polytechnic College, Otaru 047-02, Japan | [b] Department of Cardiovascular Biomechanics, Institute of Medical Electronics, Faculty of Medicine, University of Tokyo, Tokyo 113, Japan
Abstract: We studied the responses of cultured endothelial cells to mechanical shearing force directly applied to those cells in vitro to determine changes in the concentration of intracellular calcium ion (Ca++), one of the factors that transfers information within the cell. Cultured bovine fetal aortic endothelial cells containing the Ca++ fluorescence indicator, Fura-2, were rubbed with a latex balloon in a specially designed system, and changes in the fluorescence of Fura-2 caused by this shear stimulation were determined by photometric fluorescence microscopy. Immediately after shear stimulation, the concentration of Ca++ in the cells was increased and reached a peak (511 ± 165 nM, n = 12) within 15 seconds after stimulation. After the peak, the concentration was gradually restored to the resting level (55 ± 17 nM, n = 12). The magnitude of the Ca++ response was dependent on the intensity of the shear force applied. Analysis of fluorescence images of Fura-2 revealed that the cells showed this Ca++ reaction without being injured or desquamated, although there were slight differences in the degree and duration of reaction among cells. This reaction appeared even when the cells were placed in the air with no contact with the fluid. This result suggests that neither the fluid flow associated with the balloon movement nor chemical substances in the fluid are involved in the reaction, but that pure physical force alone is responsible for the Ca++ reaction. Further, it suggests that endothelial cells have the ability to perceive such physical stimulation as shear force and to transfer this information to the interior of the cell via changes in the intracellular Ca++ concentration.
Keywords: Shear stress, endothelial cell, intracellular calcium, mechanical stress
DOI: 10.3233/BIR-1994-31105
Journal: Biorheology, vol. 31, no. 1, pp. 57-68, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl