Zonal and directional variations in tensile properties of bovine articular cartilage with special reference to strain rate variation
Issue title: 3rd International Symposium on Mechanobiology of Cartilage and Chondrocyte. Brussels, May 16–17, 2003
Article type: Research Article
Authors: Verteramo, A. | Seedhom, B.B.
Affiliations: Division of Bioengineering, Academic Unit of Musculoskeletal and Rehabilitation Medicine, Leeds School of Medicine, University of Leeds, Leeds, UK
Abstract: The aims of this study were: (i) to investigate the variation in the tensile properties of articular cartilage with depth through cartilage thickness and fibre orientation; (ii) to determine the effect of strain rate on tensile properties of articular cartilage. Materials and method: All experimental work was performed on cartilage specimens taken from two bovine knee joints. Osteochondral plugs 12 mm in diameter were harvested with a special reamer from the femur and the tibial plateaux of each knee. Slices (0.2 mm thick), of articular cartilage were cut from the plug with a microtome. The predominant orientation of the collagen fibres on the cartilage surface was determined using the pinpricking technique. Each specimen used for the tensile test was cut, so as to produce a dumbbell shape, with a gauge length of 6 mm. Uniaxial tensile tests were performed on each specimen in order to determine the tensile Young's modulus, and ultimate tensile strength (UTS). In this investigation, these tensile tests were carried out at different strain rate: 1, 20, 50 and 70%/sec. Results: As regards the zonal properties, it was found that tensile stiffness was greater in the superficial layer than in deep layer. However, a few specimens from the deep layer displayed similar or greater stiffness compared to the superficial layer. With respect to the directional properties, the specimens oriented parallel to the predominant alignment of collagen, were stiffer than those, which were perpendicular to it in each layer. However, only the results regarding the deep layer can be considered statistically significant. In regard to the variation of modulus with the strain‐rate, the results showed that there is no significant increase of the modulus with increasing strain rate from 20 to 50% per second. However, at 70% per second, articular cartilage stiffness considerably increased by up to one order of magnitude greater than that determined at lower strain rates in both the superficial and deep layer. Moreover, the UTS of cartilage specimens tested at 70% per second showed a significant rise, reaching values of four to five times that of those measured at 1, 20 or 50% per second. Conclusion: The steep increases in both the stiffness and ultimate tensile strength of cartilage at high strain rates point to the existence in cartilage of a mechanism for its protection from damage by stresses arising in trauma, which are usually applied at high rates. This mechanism needs to be elucidated. The reduced anisotropy found in the present study pointed out that collagen is likely to be less organized in bovine cartilage than in the human and therefore, a study of its ultra‐structure would be appropriate.
Journal: Biorheology, vol. 41, no. 3-4, pp. 203-213, 2004