Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: McKean, Jason M. | Hsieh, Adam H. | Sung, K.L. Paul;
Affiliations: Department of Biology, the Whitaker Institute of Biomedical Engineering, University of California, San Diego, USA | Department of Orthopaedic Surgery, University of California, San Francisco, USA | Departments of Bioengineering and Orthopaedics, the Whitaker Institute of Biomedical Engineering, University of California, San Diego, USA
Note: [] Address for correspondence: Dr. K.L. Paul Sung, Departments of Orthopaedics and Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093‐0412, USA. Tel.: +858 534 5252; Fax: +858 534 5252; E‐mail: klsung@ucsd.edu.
Abstract: The anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) are two commonly injured structures in the human knee. While the MCL heals post‐traumatically, the ACL does not. Since growth factors play a major role in the proliferation phase of wound healing, we compared the differential effects of epidermal growth factor (EGF) on adhesion and proliferation of ACL and MCL fibroblasts. Using a micropipette/micromanipulator system we found that cells subjected to shorter incubation periods (15 minutes) with EGF (5, 10, 50 ng/ml) showed a general increase in adhesion to the extracellular matrix fibronectin while cells subjected to longer incubation periods (4, 6, 10, and 24 hr) with EGF (5 ng/ml) showed decreases in adhesion. For both incubation durations, MCL fibroblasts displayed a greater change in adhesion than ACL fibroblasts, when compared to control. Investigation of integrin expression showed no fluctuation in cell surface expression of the α5 subunit of the FN‐binding integrin α5β1 for all EGF (5 ng/ml) incubation times. MCL cells showed a significant increase in proliferation upon stimulation with EGF compared to ACL cells when cultured in FN coated wells. The results found in this study help provide a better understanding of EGF's role in adhesion and proliferation, two events that may contribute to the differential healing response between ACL and MCL fibroblasts. Following exposure to EGF, ACL and MCL cells initially respond by increasing their adhesion strength. MCL cells respond to all concentrations of EGF while ACL cells appear to have a threshold concentration after which EGF effects plataeu. After this initial response period (<10 hr) cells exhibit lower adhesion strength and higher proliferation rate. It is possible that the release from FN serves to enhance the ability of the cells to proliferate. These results may aid in understanding the ligament healing process.
Keywords: Growth factors, adhesion, integrins, ligament fibroblast
Journal: Biorheology, vol. 41, no. 2, pp. 139-152, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl