Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Nash, G.B.
Affiliations: Department of Haematology, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
Note: [1] First presented as part of a symposium on “Cell Biomechanics” at the International Congress on Biorheology, Nancy, 1989.
Note: [] Accepted by: Editor J.C. Healy
Abstract: The ability of red cells to deform is essential to allow their circulation. However the degree of rheological abnormality which can be tolerated before flow is impaired is not so clear. Red cell rheology has been characterised in a number of physiological, pathological and genetic conditions, and some inferences can be drawn. In vivo ageing causes a small loss of cell deformability attributable to increased membrane and internal viscosity; volume and surface area are also lost. These changes cannot be sufficient to cause cellular removal, since the cells sampled had continued to circulate. In sickle cell disease, the oxygenated blood contains dense cells that are more severely abnormal than dense, aged cells from normal individuals. Melanesian ovalocytes have comparable rigidity to dense SS cells, but this condition has no marked Circulatory pathology. Thus circulatory problems in SS disease probably stem from deoxygenation-induced sickling which causes extreme loss of deformability, rather than from the abnormal cells in oxygenated blood. In falciparum malaria, immature parasites cause appreciable loss of deformability but continue to circulate. Maturation of the parasites causes much greater rheological changes, including attachment to vascular endothelium, and the cells cease to circulate. In summary, quite marked changes in cell mechanics can occur without loss of ability to circulate. It thus seems that slight rheological alterations reported in some clinical studies are unlikely to cause appreciable flow disruption.
Keywords: Erythrocytes, Rheology, Microcirculation, Membrane Rigidity
DOI: 10.3233/BIR-1991-283-414
Journal: Biorheology, vol. 28, no. 3-4, pp. 231-239, 1991
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl