Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Shu, Mark C.S.a | Noon, George P.b | Hwang, Ned H.C.a
Affiliations: [a] Cardiovascular Flow Dynamics Laboratory, University of Houston, Houston, Texas 77004, USA | [b] Dept of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
Note: [] Accepted by: Editor Y.C.Fung
Abstract: A phase-by-phase analysis of local flow patterns at the venous anastomosis of an arteriovenous hemodialysis angioaccess loop graft (AVLG) was made. The study was carried out in an elastic, transparent Silastic in vitro flow model, which duplicates the detail geometry of the AVLG obtained from an animal model (30+ kg dogs with 12 weeks bilateral femoral AVLG implantation). The flow model was installed in a mock pulsatile flow loop system designed to simulate physiological conditions. Flow visualization was made in laser-illuminated flow fields using a high-speed cine camera. Analysis of the high-speed cine indicates there is a distinct separation region downstream of the anastomotic toe in the median plane and a stagnation region that oscillates along the opposite wall. During inward motion of the vessel wall, accumulation of particles in the separation region and the nearby stagnation region is observed. A large swirl appears in the distal vein during end-systolic period. A double-helical flow pattern occurs further down in the distal vein. Retrograde flow in the distal vein occurs in an “oscillating” manner following each cardiac cycle.
Keywords: arterial-venous loop graft, angioaccess, venous anastomosis, phasic flow patterns, stagnation region, flow separation, swirl, retrograde flow
DOI: 10.3233/BIR-1987-24622
Journal: Biorheology, vol. 24, no. 6, pp. 711-722, 1987
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl