Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: King, Malcolm
Affiliations: Pulmonary Defense Group, 317 Newton Research Bldg., University of Alberta, Edmonton, Alberta T6G 2C2
Note: [] Accepted by: Editor P. Verdugo
Abstract: The relationships between mucus rheology, depth of mucus layer and clearance by simulated cough were examined in a study employing a model plexiglass trachea lined with gels formed from locust bean gum crosslinked with sodium tetraborate. The viscoelastic properties of the mucus simulants were determined by magnetic rheometry at 100 rad/s and expressed as mechanical impedance (dynamic stress/strain ratio) and loss tangent. Cough was simulated by opening a solenoid valve connecting the model trachea to a pressurized tank, using an upstream flow-constrictive clement to shape the flow profile to approximate the pattern seen in a normal adult. Mucus clearance was quantitated by observing the movement of contrasting marker particles placed in the mucus layer. The median particle displacement was defined as the clearance index, Cl. For any initial depth of mucus, Cl increased with driving pressure in the tank, and for a given driving pressure, Cl increased linearly with increasing mucus depth. For a given driving pressure and depth, Cl decreased with increasing mechanical impedance of the mucus. At constant mechanical impedance, Cl increased with increasing loss tangent, in other words, cough clearance was impeded more by elasticity than viscosity. Mucus clearance was associated with transient wave formation in the lining layer. Thus dependence on viscoelasticity is consistent with observations that airflow-mucus interaction and wave formation are impeded by elasticity. The clearance vs. loss tangent relationship for cough is opposite to that found for ciliary clearance (Biorheology 1980, 17, 249), suggesting a natural balance in viscosity and elasticity for mucus to be cleared by both mechanisms. The differences in clearance-viscoelasticity relationship also suggest that rheological adaptation of mucus should occur when the mode of clearance shifts from ciliary action to cough.
Keywords: mucus rheology, two-phase flow
DOI: 10.3233/BIR-1987-24611
Journal: Biorheology, vol. 24, no. 6, pp. 589-597, 1987
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl