Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Dintenfass, L.
Affiliations: Department of Medicine, University of Sydney, NSW 2006, Australia
Note: [] Accepted by: Editor Y.C.B. Fung
Abstract: A project on “Aggregation of Red Cells” has been accepted by NASA in 1977. An automated slit-capillary photo-viscometer has been designed during 1979–1984, and its last version met NASA’s space hazards requirements. The ‘heart’ of instrument is a set of two highly polished glass plates, spaced by a gap of 12.5 micrometers. An original drum-like infusion pump allows utilization of up to eight blood samples. During a sequential process, blood flows through the slit, and then stops to allow formation of aggregates. Micro- and macro-photography is carried out, and 500 photographs are obtained. Blood from normal donors and patients with history of ischaemic heart disease, colon cancer, juvenile-onset diabetes, hyperlipidaemia, etc., is anticoagulated and adjusted to haematocrit of 0.30 using native plasma. Samples are divided, and infused into the ‘flight’ and ‘ground’ instruments. Prior to experiment temp. is 5°C; temp. during experiment is 25°C. Experiments took place on 24–25 January 1985, on the middeck of space shuttle ‘Discovery’. Subsequent results showed that red blood cells do not change shape under zero gravity; that aggregation of red cells does take place; that aggregates in pathologic blood show morphology of normal rouleaux under zero gravity, while identical blood shows clumps of red cells on the ground. The latter observation suggests that zero gravity might affect cell-to-cell interaction, and perhaps microstructure of the cell membrane. These aspects must remain however tentative till a confirmation by subsequent experiments can be obtained.
Keywords: zero gravity, aggregation of red cells in disease, NASA Space Shuttle, slit-capillary photo-viscometer, rouleaux and clumps of red cells, morphology under zero gravity
DOI: 10.3233/BIR-1986-23403
Journal: Biorheology, vol. 23, no. 4, pp. 331-347, 1986
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl