Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chien, S. | Schmalzer, E.A. | Lee, M.M.L. | Impelluso, T. | Skalak, R.
Affiliations: Department of Physiology, College of Physicians and Surgeons; Bioengineering Institute; and Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY 10032
Note: [] Accepted by: Y.C.B. Fung
Abstract: The time-dependent filtration pressure curves of cell suspensions pumped through 5 μm polycarbonate filters at a constant flow rate were analyzed with the aid of a theoretical model developed in an accompanying paper. The cell suspensions contained mixtures of erythrocytes and leukocytes, the concentrations of which were systematically varied. The pressure-time (P-t) curves generally showed multiphasic components. Following the attainment of a quasi-steady state level, the pressure rose first rapidly and then more slowly. The rates of pressure rise in the fast and slow phases were normalized by using the steady state pressure reading (P0) obtained with Ringer solution at the same flow rate, and are designated k1 and k2, respectively. Both k1 and k2 increased with rising concentrations of leukocytes, [WBC], or erythrocytes, [RBC]. [WBC] is 700-1000 times more effective than [RBC] in affecting k1 and k2. k1 is related to the dynamic plugging and unplugging of filter pores, primarily by leukocytes. k2 is attributable to the “permanent” plugging of filter pores, again predominantly by leukocytes. The experimental P-t curves can be fitted with the theoretical model by using appropriate constants for leukocyte plugging. The results indicate that nearly 2/3 of the entering leukocytes cause transient plugging of pores, with an unplugging rate of 4.1 percent/sec/unit pressure rise, and that approximately 2.2 percent of the entering leukocytes are “permanently” lodged. These results underscore the important role of leukocytes in determining the later phase of the P-t curve and support the concept that leukocyte plugging may have pathophysiological significance in causing microvascular occlusion in disease states.
Keywords: Erythrocytes, Filterability, Hematocrit, Leukocytes, Microvascular obstruction
DOI: 10.3233/BIR-1983-20102
Journal: Biorheology, vol. 20, no. 1, pp. 11-27, 1983
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl