Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Copley, Alfred L.
Affiliations: Laboratory of Biorheology, Polytechnic Institute of New York, Brooklyn, NY 11201, USA
Note: [1] Third International Congress of Biorheology. Symposium on Hemorheology in Astronautics
Note: [] Accepted by: Editor G.V.F. Seaman
Abstract: Hemorheology, viz., rheology of blood and vessel wall, is considered to be affected in a near zero gravity environment. As body water, constituting a predominant component of the body mass of living subjects, is mainly distributed among intracellular, interstitial and plasma compartments, gravity appears to be important in the regulation of their volumes. Exposure of human and other vertebrate subjects to a near zero gravity environment may bring about a number of hemorheological changes, affecting the blood and the vessel structures with which blood or its components come into direct contact. Since no hemorheological studies have been made in such an environment, experiments, employing a newly designed light-weight rheogoniometer (LWR), are proposed to be performed on ground and in the Spacelab Module. The modified Weissenberg Rheogoniometer is recommended for comparative testing the efficacy and precision of the LWR and accessories. The following studies, based on research in my laboratory, are proposed: 1. Viscosity and elasticity measurements of human blood (HB); 2. cinephotomicrographic recordings of HB in steady and oscillatory shears; 3. rheological studies of viscosity and elasticity of surface layers of purified fibrinogen and other proteins; 4. measurements of viscoelasticity and rigidity of fibrin gels. The findings to be secured promise to shed new light on recent findings in astronauts exposed to protracted stay in a near zero gravity environment. The information gained may also identify the role which gravity plays in situations on earth which thus far could not be fully appreciated. Our proposed studies may lead to corrective prophylactic measures to enable people to live and work during protracted stay in a near zero gravity environment.
DOI: 10.3233/BIR-1979-161-208
Journal: Biorheology, vol. 16, no. 1-2, pp. 37-49, 1979
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl