Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Baskurt, Oguz K.; | Bor‐Kucukatay, Melek | Yalcin, Ozlem | Meiselman, Herbert J.
Affiliations: Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey | Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
Note: [] Address for correspondence: Oguz K. Baskurt, Department of Physiology, Akdeniz University School of Medicine, Antalya, Turkey. Fax: +90 242 2274463; E‐mail: baskurt@akdeniz.edu.tr.
Abstract: Differences of red blood cell (RBC) aggregation among various mammalian species has been previously reported for whole blood, for RBC in autologous plasma, and for washed RBC re‐suspended in polymer solutions. The latter observation implies the role of cellular factors, yet comparative studies of such factors are relatively limited. The present study thus investigated RBC aggregation and RBC electrophoretic mobility (EPM) for guinea pigs, rabbits, rats, humans and horses; RBC were re‐suspended in isotonic 500 kDa dextran solutions for the EPM and aggregation measurements, with aggregation studies also done in autologous plasma. Salient results included: (1) species‐specific RBC aggregation in both plasma and dextran (horse > human > rat > rabbit ≅ guinea pig) with a significant correlation between aggregation in the two media; (2) similar EPM values in PBS for rat, human and horse, a lower value for guinea pig, and a markedly reduced EPM for rabbit RBC; (3) EPM values in dextran with a rank order identical to that for cells in PBS; (4) relative EPM results indicating formation of a polymer‐poor, low viscosity depletion layer at the RBC surface (greatest depletion for horse RBC). EPM‐aggregation correlations were evident and generally consistent with the Depletion Model for aggregation, yet did not fully explain differences between species; additional studies at various ionic strengths and with various dextran fractions thus seem warranted.
Keywords: RBC aggregation, electrophoretic mobility, polymer depletion, comparative, dextran
Journal: Biorheology, vol. 37, no. 5-6, pp. 417-428, 2000
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl