Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Selected Papers From ESORICS 2021
Guest editors: Elisa Bertino, Haya Shulman and Michael Waidner
Article type: Research Article
Authors: Nappa, Antonioa; e | Úbeda-Portugués, Aarona | Papadopoulos, Panagiotisb | Varvello, Matteod | Tapiador, Juana | Lanzi, Andreac; *
Affiliations: [a] Universidad Carlos III de Madrid | [b] Telefonica Research | [c] University of Milan | [d] Nokia Bell Labs. | [e] Zimperium zLabs team, Zimperium Inc.
Correspondence: [*] Corresponding author. E-mail: andrea.lanzi@unimi.it.
Note: [1] This paper is an extended and revised version of a paper presented at ESORICS 2021.
Abstract: Online malware scanners are one of the best weapons in the arsenal of cybersecurity companies and researchers. A fundamental part of such systems is the sandbox that provides an instrumented and isolated environment (virtualized or emulated) for any user to upload and run unknown artifacts and identify potentially malicious behaviors. The provided API and the wealth of information in the reports produced by these services have also helped attackers test the efficacy of numerous techniques to make malware hard to detect. The most common technique used by malware for evading the analysis system is to monitor the execution environment, detect the presence of any debugging artifacts, and hide its malicious behavior if needed. This is usually achieved by looking for signals suggesting that the execution environment does not belong to a native machine, such as specific memory patterns or behavioral traits of certain CPU instructions. In this paper, we show how an attacker can evade detection on such analysis services by incorporating a Proof-of-Work (PoW) algorithm into a malware sample. Specifically, we leverage the asymptotic behavior of the computational cost of PoW algorithms when they run on some classes of hardware platforms to effectively detect a non bare-metal environment of the malware sandbox analyzer. To prove the validity of this intuition, we design and implement Scramblesuit, a framework to automatically (i) implement sandbox detection strategies, and (ii) embed a test evasion program into an arbitrary malware sample. We perform a comprehensive evaluation of Scramblesuit across a wide range of: 1) COTS architectures (ARM, Apple M1, i9, i7 and Xeon), 2) malware families, and 3) online sandboxes (JoeSandbox, Sysinternals, C2AE, Zenbox, Dr.Web VX Cube, Tencent HABO, YOMI Hunter). Our empirical evaluation shows that a PoW-based evasion technique is hard to fingerprint, and reduces existing malware detection rate by a factor of 10. The only plausible counter-measure to Scramblesuit is to rely on bare-metal online malware scanners, which is unrealistic given they currently handle millions of daily submissions.
Keywords: Malware, malware analysis, sandbox evasion, PoW
DOI: 10.3233/JCS-220005
Journal: Journal of Computer Security, vol. 30, no. 6, pp. 851-876, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl