Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mir, Manzoor A.* | Mehraj, Umar | Sheikh, Bashir Ahmad | Hamdani, Syed Suhail
Affiliations: Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
Correspondence: [*] Corresponding author: Manzoor A. Mir, Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India. Tel.: +91 9622901319. E-mail: drmanzoor@kashmiruniversity.ac.inormirmanzoor110@gmail.com.
Abstract: Antibodies represent a well-established class of clinical diagnostics for medical applications as well as essential research and biotechnological tools. Although both polyclonal and monoclonal antibodies are indispensable reagents in basic research and diagnostics but both of them have their limitations. Hence, there is urgent need to develop strategies aimed at production of alternative scaffolds and recombinant antibodies of smaller dimensions that could be easily produced, selected and manipulated. Unlike conventional antibodies, members of Camelidae and sharks produce antibodies composed only of heavy chains with small size, high solubility, thermal stability, refolding capacity and good tissue penetration in vivo. The discovery of these naturally occurring antibodies having only heavy-chain in Camelidae family and their further development into small recombinant nanobodies represents an attractive alternative in drug delivery, diagnostics and imaging. Nanobody derivatives are soluble, stable, versatile, have unique refolding capacities, reduced aggregation tendencies and high-target binding capabilities. They can be genetically customized to target enzymes, transmembrane proteins or molecular interactions. Their ability to recognize recessed antigenic sites has been attributed to their smaller size and the ability of the extended CDR3 loop to quickly penetrate into such epitopes. With the advent of molecular engineering and phage display technology, they can be of potential use in molecular imaging, drug delivery and therapeutics for several major diseases. In this review we present the recent advances in nanobodies for modulating immune functions, for targeting cancers, viruses, toxins and microbes as well as their utility as diagnostic and biosensor tools.
Keywords: Recombinant antibodies, nanobody, drug delivery, cancer, diagnostics, chimeric, humanized antibodies, immunoaffinity chromatography, site directed mutagenesis
DOI: 10.3233/HAB-190390
Journal: Human Antibodies, vol. 28, no. 1, pp. 29-51, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl