Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Velasco, Pedro Pablo Pérez | de Lara, Juan
Affiliations: School of Computer Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 - Madrid, Spain. E-mails: pedro.perez@uam.es; Juan.deLara@uam.es
Abstract: In the Matrix approach to graph transformation we represent simple digraphs and rules with Boolean matrices and vectors, and the rewriting is expressed using Boolean operators only. In previous works, we developed analysis techniques enabling the study of the applicability of rule sequences, their independence, state reachability and the minimal graph able to fire a sequence. In the present paper we improve our framework in two ways. First, we make explicit (in the form of a Boolean matrix) some negative implicit information in rules. This matrix (called nihilation matrix) contains the elements that, if present, forbid the application of the rule (i.e. potential dangling edges, or newly added edges, which cannot be already present in the simple digraph). Second, we introduce a novel notion of application condition, which combines graph diagrams together with monadic second order logic. This allows for more flexibility and expressivity than previous approaches, as well as more concise conditions in certain cases. We demonstrate that these application conditions can be embedded into rules (i.e. in the left hand side and the nihilation matrix), and show that the applicability of a rule with arbitrary application conditions is equivalent to the applicability of a sequence of plain rules without application conditions. Therefore, the analysis of the former is equivalent to the analysis of the latter, showing that in our framework no additional results are needed for the study of application conditions. Moreover, all analysis techniques of [21,22] for the study of sequences can be applied to application conditions.
Keywords: Graph Transformation, Matrix Graph Grammars, Application Conditions, Monadic Second Order Logic, Graph Dynamics
DOI: 10.3233/FI-2010-238
Journal: Fundamenta Informaticae, vol. 99, no. 1, pp. 29-62, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl