Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Intelligent Data Analysis in Granular Computing
Article type: Research Article
Authors: De Bock, KoenW. | Van den Poel, Dirk
Affiliations: Department of Marketing, Faculty of Economics and Business Administration, Ghent University, Belgium. E-mail: Koen.DeBock@UGent.be; Dirk.VandenPoel@UGent.be
Abstract: Several recent studies have explored the virtues of behavioral targeting and personalization for online advertising. In this paper, we add to this literature by proposing a cost-effective methodology for the prediction of demographic website visitor profiles that can be used for web advertising targeting purposes. The methodology involves the transformation of website visitors' clickstream patterns to a set of features and the training of Random Forest classifiers that generate predictions for gender, age, level of education and occupation category. These demographic predictions can support online advertisement targeting (i) as an additional input in personalized advertising or behavioral targeting, or (ii) as an input for aggregated demographic website visitor profiles that supportmarketingmanagers in selecting websites and achieving an optimal correspondence between target groups and website audience composition. The proposed methodology is validated using data from a Belgian web metrics company. The results reveal that Random Forests demonstrate superior classification performance over a set of benchmark algorithms. Further, the ability of the model set to generate representative demographic website audience profiles is assessed. The stability of the models over time is demonstrated using out-of-period data.
Keywords: demographic prediction, demographic targeting, web advertising, web user profiling, clickstream analysis, ensemble classification, Random Forests, out-of-period validation
DOI: 10.3233/FI-2010-216
Journal: Fundamenta Informaticae, vol. 98, no. 1, pp. 49-70, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl