Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Machines, Computations and Universality, Part II
Article type: Research Article
Authors: Istrate, Gabriel
Affiliations: Austria Research Institute, Bd. V. Pârvan 4, cam. 045B, Timişoara RO-300223, Romania. gabrielistrate@acm.org
Note: [] Address for correspondence: Austria Research Institute, Bd. V. Pârvan 4, cam. 045B, Timişoara RO-300223, Romania
Abstract: We study nondeterministic and probabilistic versions of a discrete dynamical system (due to T. Antal, P. L. Krapivsky, and S. Redner [3]) inspired by Heider's social balance theory. We investigate the convergence time of this dynamics on several classes of graphs. Our contributions include: 1. We point out the connection between the triad dynamics and a generalization of annihilating walks to hypergraphs. In particular, this connection allows us to completely characterize the recurrent states in graphs where each edge belongs to at most two triangles. 2. We also solve the case of hypergraphs that do not contain edges consisting of one or two vertices. 3. We show that on the so-called "triadic cycle" graph, the convergence time is linear. 4. We obtain a cubic upper bound on the convergence time on 2-regular triadic simplexes G. This bound can be further improved to a quantity that depends on the Cheeger constant of G. In particular this provides some rigorous counterparts to experimental observations in [25]. We also point out an application to the analysis of the random walk algorithm on certain instances of the 3-XOR-SAT problem.
Keywords: social balance, discrete dynamical systems, rapidly mixingMarkov chains, XOR-SAT
DOI: 10.3233/FI-2009-0047
Journal: Fundamenta Informaticae, vol. 91, no. 2, pp. 341-356, 2009
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl