Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hamzeh, Ali | Rahmani, Adel
Affiliations: Computer Engineering Department, Iran University of Science and Technology, Teheran, Iran. E-mails: rahmani@iust.ac.ir, hamzeh@iust.ac.ir
Note: [] Address for correspondence: Computer Engineering Department, Iran University of Science and Technology, Narmak, Tehran, Iran
Abstract: Learning Classifier Systems are Evolutionary Learning mechanisms which combine Genetic Algorithm and the Reinforcement Learning paradigm. Learning Classifier Systems try to evolve state-action-reward mappings to propose the best action for each environmental state to maximize the achieved reward. In the first versions of learning classifier systems, state-action pairs can only be mapped to a constant real-valued reward. So to model a fairly complex environment, LCSs had to develop redundant state-action pairs which had to be mapped to different reward values. But an extension to a well-known LCS, called Accuracy Based Learning Classifier System or XCS, was recently developed which was able to map state-action pairs to a linear reward function. This new extension, called XCSF, can develop a more compact population than the original XCS. But some further researches have shown that this new extension is not able to develop proper mappings when the input parameters are from certain intervals. As a solution to this issue, in our previous works, we proposed a novel solution inspired by the idea of using evolutionary approach to approximate the reward landscape. The first results seem promising, but our approach, called XCSFG, converged to the goal very slowly. In this paper, we propose a new extension to XCSFG which employs micro-GA which its needed population is extremely smaller than simple GA. So we expect micro-GA to help XCSFG to converge faster. Reported results show that this new extension can be assumed as an alternative approach in XCSF family with respect to its convergence speed, approximation accuracy and population compactness.
Keywords: FunctionApproximation, Learning Classifier Systems, MicroGenetic Algorithm, XCSF
Journal: Fundamenta Informaticae, vol. 86, no. 1-2, pp. 93-111, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl