Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Concurrency Specification and Programming (CS&P)
Article type: Research Article
Authors: Delimata, Pawel | Suraj, Zbigniew
Affiliations: Chair of Computer Science University of Rzeszow Rejtana 16A, 35-310 Rzeszow, Poland. pdelimata@wp.pl; zsuraj@univ.rzeszow.pl
Note: [] Address for correspondence: Chair of Computer Science, University of Rzeszow, Rejtana 16A, 35-310 Rzeszow, Poland
Abstract: Many problems in pattern classification and knowledge discovery require a selection of a subset of attributes or features to represent the patterns to be classified. The approach presented in this paper is designed mostly for multiple classifier systems with homogeneous (identical) classifiers. Such systems require many different subsets of the data set. The problem of finding the best subsets of a given feature set is of exponential complexity. The main aim of this paper is to present ways to improve RBFS algorithm which is a feature selection algorithm. RBFS algorithm is computationally quite complex because it uses all decision-relative reducts of a given decision table. In order to increase its speed, we propose a new algorithm called ARS algorithm. The task of this algorithm is to decrease the number of the decision-relative reducts for a decision table. Experiments have shown that ARS has greatly improved the execution time of the RBFS algorithm. A small loss on the classification accuracy of the multiple classifier used on the subset created by this algorithm has also been observed. To improve classification accuracy the simplified version of the bagging algorithm has been applied. Algorithms have been tested on some benchmarks.
Keywords: feature selection, multiple classifiers, reducts, diversity measures
Journal: Fundamenta Informaticae, vol. 85, no. 1-4, pp. 97-110, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl