Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Konstantinidis, Stavros | Nicolae, Santean | Yu, Sheng
Affiliations: Dep. of Math. and Comp. Sc. Saint Mary's University Halifax B3H 3C3, NS, Canada. E-mail: stavros@cs.smu.ca | School of Computer Science, University of Waterloo, Waterloo N2L 3G1, ON, Canada. E-mail: nsantean@cs.uwaterloo.ca | Department of Computer Science, University of Western Ontario London N6A 5B8, ON, Canada. E-mail: syu@csd.uwo.ca
Abstract: In this paper we present a different framework for the study of fuzzy finite machines and their fuzzy languages. Unlike the previous work on fuzzy languages, characterized by fuzzification at the level of their acceptors/generators, here we follow a top-down approach by starting our fuzzification with more abstract entities: monoids and particular families in monoids. Moreover, we replace the unit interval (in fact, a finite subset of the unit interval) as support for fuzzy values with the more general structure of a lattice. We have found that completely distributive complete lattices allow the fuzzification at the highest level, that of recognizable and rational sets. Quite surprisingly, the fuzzification process has not followed thoroughly the classical (crisp) theory. Unlike the case of rational sets, the fuzzification of recognizable sets has revealed a few remarkable exceptions from the crisp theory: for example the difficulty of proving closure properties with respect to complement, meet and inverse morphisms. Nevertheless, we succeeded to prove the McKnight and Kleene theorems for fuzzy sets by making the link between fuzzy rational/recognizable sets on the one hand and fuzzy regular languages and FT-NFA languages (languages defined by NFA with fuzzy transitions) on the other. Finally, we have drawn the attention to fuzzy rational transductions, which have not been studied extensively and which bring in a strong note of applicability.
Keywords: Fuzzy Transducer, Rational Set, Recognizable Set, Lattice
Journal: Fundamenta Informaticae, vol. 76, no. 4, pp. 413-447, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl