Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ronse, Christian | Serra, Jean
Abstract: This paper generalizes the notion of symmetrical neighbourhoods, which have been used to define connectivity in the case of sets, to the wider framework of complete lattices having a sup-generating family. Two versions (weak and strong) of the notion of a symmetrical dilation are introduced, and they are applied to the generation of "connected components" from the so-called "geodesic dilations". It turns out that any "climbing" "weakly symmetrical" extensive dilation induces a "geodesic" connectivity. When the lattice is the one of subsets of a metric space, the connectivities which are obtained in this way may coincide with the usual ones under some conditions, which are clarified. The abstract theory can be applied to grey-level and colour images, without any assumption of translation-invariance of operators.
Keywords: neighbourhood, symmetry, connectivity, geodesy, complete, lattices, mathematical morphology, metrics
Journal: Fundamenta Informaticae, vol. 46, no. 4, pp. 349-395, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl