Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Abhishek, Kunal; * | Dharma Prakash Raj, E.George
Affiliations: Society for Electronic Transactions and Security (SETS), Chennai, India. kunalabh@gmail.com | School of Computer Sciences, Engineering and Applications, Bharathidasan University, Tiruchirappalli, India. georgeprakashraj@yahoo.com
Correspondence: [*] Address of correspondence: Society for Electronic Transactions and Security (SETS), MGR Knowledge City, C.I.T. Campus, Taramani, Chennai, 600113 - India.
Abstract: An operating system kernel uses cryptographically secure pseudorandom number generator (CSPRNG) for creating address space layout randomization (ASLR) offsets to protect memory addresses of processes from exploitation, storing users’ passwords securely and creating cryptographic keys. However, at present, popular kernel CSPRNGs such as Yarrow, Fortuna and /dev/(u)random which are used by MacOS/iOS/FreeBSD, Windows and Linux/Android kernels respectively lack the very crucial property of non-reproducibility of their generated bitstreams which is used to nullify the scope of predicting the bitstream. This paper proposes a CSPRNG called Cryptographically Secure Pseudorandom Number Generator for Kernel Applications (KCS-PRNG) which generates non-reproducible bitstreams. The proposed KCS-PRNG presents an efficient design uniquely configured with two new non-standard and verified elliptic curves and clock-controlled Linear Feedback Shift Registers (LFSRs) and a novel method to consistently generate non-reproducible random bitstreams of arbitrary lengths. The generated bitstreams are statistically indistinguishable from true random bitstreams and provably secure, resilient to important attacks, exhibits backward and forward secrecy, exhibits exponential linear complexity, large period and huge key space.
Keywords: Random Number Generator, CSPRNG, LFSR, Elliptic Curve, Kernel Applications
DOI: 10.3233/FI-222111
Journal: Fundamenta Informaticae, vol. 185, no. 4, pp. 285-311, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl