Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special Issue on Deep Neural Networks for Digital Media Algorithms
Guest editors: Wladyslaw SkarbekProf. and Yu-Dong ZhangProf.
Article type: Research Article
Authors: Yu, Xianga; † | Wang, Shui-Huab; *
Affiliations: [a] Department of Informatics, University of Leicester, LE1 7RH, UK. xy144@le.ac.uk | [b] School of Architecture, Building and Civil engineering, Loughborough University, LE11 3TU, UK. shuihuawang@ieee.org
Correspondence: [*] Address for correspondence: School of Architecture, Building and Civil engineering, Loughborough University, LE11 3TU, UK
Note: [†] Xiang Yu holds a China Scholarship Council studentship with the University of Leicester
Abstract: Breast cancer is one of the common cancers threatening the health of women while the incident rate of it is quite low in men to contribute to a major killer of men. Early syndromes of breast cancer including micro-calcification, mass, and distortion in mammography images can be very helpful for radiologists to make diagnosis of the cancer at early stage, which means the cancer can be treated or even be cured timely and thus make early diagnosis important. To assist radiologists with diagnosis, we set up a computer-aided diagnosis system to make diagnosis decision of breast cancer in this paper. We acquired regions of interests in mammographic images from public database, and labeled regions containing micro-calcification or mass as abnormality while regions without such abnormalities as normality. By transferring the state-of-the-art networks into our quest, we found that ResNet18 performed best and achieved mean accuracy of 95.91%.
Keywords: Abnormality, Diagnosis system, Transfer learning
DOI: 10.3233/FI-2019-1829
Journal: Fundamenta Informaticae, vol. 168, no. 2-4, pp. 219-230, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl