Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Grahne, Gösta; * | Moallemi, Ali
Affiliations: Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada. grahne@cs.concordia.ca, moa_ali@encs.concordia.ca
Correspondence: [*] Address for correspondence: Department of Computer Science and Software Engineering, Concordia University, Montreal, Canada.
Abstract: Incomplete Information research is quite mature when it comes to so called existential nulls, where an existential null is a value stored in the database, representing an unknown object. For some reason universal nulls, that is, values representing all possible objects, have received almost no attention. We remedy the situation in this paper, by showing that a suitable finite representation mechanism, called Star Cylinders, handling universal nulls can be developed based on the Cylindric Set Algebra of Henkin, Monk and Tarski. We provide a finitary version of the cylindric set algebra, called Cylindric Star Algebra, and show that our star-cylinders are closed under this algebra. Moreover, we show that any First Order Relational Calculus query over databases containing universal nulls can be translated into an equivalent expression in our cylindric star-algebra, and vice versa. All cylindric star-algebra expressions can be evaluated in time polynomial in the size of the database. The representation mechanism is then extended to Naive Star Cylinders, which are star-cylinders allowing existential nulls in addition to universal nulls. For positive queries (with universal quantification), the well known naive evaluation technique can still be applied on the existential nulls, thereby allowing polynomial time evaluation of certain answers on databases containing both universal and existential nulls. If precise answers are required, certain answer evaluation with universal and existential nulls remains in coNP. Note that the problem is coNP-hard, already for positive existential queries and databases with only existential nulls. If inequalities ¬(xi ≈ xj) are allowed, reasoning over existential databases is known to be ∏2p -complete, and it remains in ∏2p when universal nulls and full first order queries are allowed.
Keywords: Relational Algebra, Cylindric Set Algebra, Incomplete Information, Query Languages
DOI: 10.3233/FI-2019-1819
Journal: Fundamenta Informaticae, vol. 167, no. 4, pp. 287-321, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl