Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Advances in Biological processes and Petri nets (BioPPN)
Guest editors: Anna Gambin and Monika Heiner
Article type: Research Article
Authors: Baldan, Paoloa | Bocci, Martinab | Brigolin, Danielec | Cocco, Nicolettad | Heiner, Monikae | Simeoni, Martaf; *
Affiliations: [a] Dipartimento di Matematica, Università di Padova, Italy. baldan@math.unipd.it | [b] Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari di Venezia, Italy. martina.bocci.1@gmail.com | [c] Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari di Venezia, Italy. brigo@unive.it | [d] Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari di Venezia, Italy. cocco@unive.it | [e] Computer Science Institute, Brandenburg University of Technology, Cottbus, Germany. monika.heiner@b-tu.de | [f] Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari di Venezia, Italy. simeoni@unive.it
Correspondence: [*] Address for correspondence: Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca’ Foscari di Venezia, via Torino, 155, 30172 Mestre-Venezia, Italy
Abstract: We consider trophic networks, a kind of networks used in ecology to represent feeding interactions (what-eats-what) in an ecosystem. Starting from the observation that trophic networks can be naturally modelled as Petri nets, we explore the possibility of using Petri nets for the analysis and simulation of trophic networks. We define and discuss different continuous Petri net models, whose level of accuracy depends on the information available for the modelled trophic network. The simplest Petri net model we construct just relies on the topology of the network. We also propose a technique for deriving a more refined model that embeds into the Petri net the known constraints on the transition rates that represent the knowledge on metabolism and diet of the species in the network. Finally, if the information of the biomass amounts for each species at steady state is available, we discuss a way of further refining the Petri net model in order to represent dynamic behaviour. We apply our Petri net technology to a case study of the Venice lagoon and analyse the results.
DOI: 10.3233/FI-2018-1673
Journal: Fundamenta Informaticae, vol. 160, no. 1-2, pp. 27-52, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl