Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Cognitive Informatics and Computational Intelligence: Theory and Applications
Article type: Research Article
Authors: Hruschka Jr., E. R. | Duarte, M. C. | Nicoletti, M. C.
Affiliations: Department of Computer Science, UFSCar, S. Carlos, SP, Brazil. estevam@dc.ufscar.br, maisa@dc.ufscar.br, carmo@dc.ufscar.br
Note: [] Address for correspondence: Department of Computer Science, Federal University of S. Carlos, Rodovia Washington Luis, Km 235, 13565 905 S. Carlos, SP, Brazil
Note: [] Also works: FACCAMP, Campo Limpo Paulista, SP, Brazil
Abstract: The project and implementation of autonomous computational systems that incrementally learn and use what has been learnt to, continually, refine its learning abilities throughout time is still a goal far from being achieved. Such dynamic systems would conform to the main ideas of the automatic learning model conventionally characterized as never-ending learning (NEL). The never-ending approach to learning exhibits similarities to the semi-supervised (SS) model which has been successfully implemented by bootstrap learning methods. Bootstrap learning has been one of the most successful among the SS-methods proposed to date and, as such, the natural candidate for implementing NEL systems. Bootstrap methods learn from an available labeled set of data, use the induced knowledge to label some unlabeled new data and, recurrently, learn again from both sets of data in a cyclic manner. However the use of SS methods, particularly bootstrapping methods, to implement NEL systems can give rise to a problem known as concept-drift. Errors that may occur when the system automatically labels new unlabeled data can, over time, cause the system to run off track. The development of new strategies to lessen the impact of concept-drift is an important issue that should be addressed if the goal is to increase the plausibility of developing such systems, employing bootstrap methods. Coupling techniques can play an important role in reducing concept-drift effects over machine learning systems, particularly those designed to perform tasks related to machine reading. This paper proposes and formalizes relevant coupling strategies for dealing with the concept-drift problem in a NEL environment implemented as the system RTWP (Read The Web in Portuguese); initial results have shown they are promising strategies for minimizing the problem taking into account a few system settings.
Keywords: machine learning, never-ending learning, bootstrap method, coupling, concept-drift, machine reading, semi-supervised learning, autonomous intelligent system
DOI: 10.3233/FI-2013-824
Journal: Fundamenta Informaticae, vol. 124, no. 1-2, pp. 47-61, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl