Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Simson, Daniel
Affiliations: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland. simson@mat.uni.torun.pl
Note: [] Address for correspondence: Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland
Abstract: By computer algebra technique and computer computations, we solve the mesh morsification problems 1.10 and present a classification of irreducible mesh roots systems, for some of the simply-laced Dynkin diagrams $\rmDelta \in \{\mathbb{A}_n,\mathbb{D}_n, \mathbb{E}_6, \mathbb{E}_7, \mathbb{E}_8\}$. The methods we use show an importance of computer algebra tools in solving difficult modern algebra problems of enough high complexity that had no solution by means of standard theoretical tools only. Inspired by results of Sato [Linear Algebra Appl. 406(2005), 99-108] and a mesh quiver description of indecomposable representations of finite-dimensional algebras and their derived categories explained in [London Math. Soc. Lecture Notes Series, Vol. 119, 1988] and [Fund. Inform. 109(2011), 425-462] (see also 5.11), given a Dynkin diagram Δ, with n vertices and the Euler quadratic form q$_\rmDelta : \mathbb{Z}^n \rightarrow \mathbb{Z}$, we study the set Mor$_\rmDelta \subseteq \mathbb{M}_{n} (\mathbb{Z})$ of all morsifications of q$_\rmDelta$ [37], i.e., the non-singular matrices A $in \mathbb{M}_{n}(\mathbb{Z})$ such that its Coxeter matrix Cox$_A$ := -A · A$^{-tr}$ lies in Gl(n, \mathbb{Z}) and q$_{\rmDelta}$ (v) = v · A · v$^{tr}$, for all v $\in \mathbb{Z}n$. The matrix Weyl group \mathbb{W}$_\rmDelta$ (2.13) acts on Mor$_\rmDelta$ and the determinant detA $\in$ \mathbb{Z}, the order cA $\ge2$ of CoxA (i.e. the Coxeter number), and the Coxeter polynomial cox$_A$ (t) := det(t ·E-Cox$_A$) $\in$ \mathbb{Z}[t] are $\mathbb{W}_\rmDelta$-invariant. Moreover, the finite set $R_{q\rmDelta} = \{v \in \mthbb{Z}^n; q_\rmDelta (v) = 1\}$ of roots of q$_\rmDelta$ is Cox$_A$- invariant. The following problems are studied in the paper: (a) determine the $\mathbb{W}_\rmDelta$-orbits \cal{Orb}(A) of Mor$_\rmDelta$ and the set $\cal{CPol}_\rmDelta = \{cox_{A}(t); A \in Mor_\rmDelta\}$, (b) construct a finite minimal Cox$_A$-mesh quiver in $\mathbb{Z}^n$ containing all Cox$_A$-orbits of the finite set $R_{q\rmDelta}$ of roots of q$_\rmDelta$;. We prove that \cal{CPol}$_\rmDelta$ is a finite set and we construct algorithms allowing us to solve the problems for the morsifications $A = [a_{ij}] \in Mor_\rmDelta$, with $|a_{ij}| \le 2$. In this case, by computer algebra technique and computer computations, we prove that, for $n \le 8$, the number of the $\mathbb{W}_\rmDelta$-orbits \cal{Orb}(A) is at most 6, $s_\rmDelta := |\cal{CPol}_\rmDelta| \le 9$ and, given A,A' $\in$ Mor$_\rmDelta$ and $n \le 7$, the following three conditions are equivalent: (i) A' = $B^{tr}$ · A · B, for some B $\in$ Gl(n, \mathbb{Z}), (ii) cox$_{A}$(t) = cox$_{A'}$ (t), and (iii) cA · det A = c$_{A'}$ · det A'. We also show that s$_{\rmDelta}$ equals 6, 5, and 9, if $\rmDelta$ is the diagram $\mathbb{E}_6$, $\mathbb{E}_7$, and $\mathbb{E}_8$, respectively.
Keywords: positive unit form, morsification, Dynkin diagram, Coxeter polynomial, Coxeter matrix, Coxeter spectrum, Euler bilinear form, Weyl group, mesh quiver of roots, mesh geometry
DOI: 10.3233/FI-2013-820
Journal: Fundamenta Informaticae, vol. 123, no. 4, pp. 447-490, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl