Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Concurrency Specification and Programming (CS&P)
Article type: Research Article
Authors: Amin, Talha | Chikalov, Igor | Moshkov, Mikhail | Zielosko, Beata
Affiliations: Mathematical and Computer Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia, {talha.amin, igor.chikalov, mikhail.moshkov, beata.zielosko}@kaust.edu.sa
Note: [] Address for correspondence: Mathematical and Computer Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia Also works: Institute of Computer Science, University of Silesia, 39, Będzińska St., Sosnowiec 41-200, Poland
Abstract: This paper is devoted to the study of an extension of dynamic programming approach which allows optimization of partial decision rules relative to the length or coverage. We introduce an uncertainty measure J(T) which is the difference between number of rows in a decision table T and number of rows with the most common decision for T. For a nonnegative real number γ, we consider γ-decision rules (partial decision rules) that localize rows in subtables of T with uncertainty at most γ. Presented algorithm constructs a directed acyclic graph Δγ(T) which nodes are subtables of the decision table T given by systems of equations of the kind “attribute = value”. This algorithm finishes the partitioning of a subtable when its uncertainty is at most γ. The graph Δγ(T) allows us to describe the whole set of so-called irredundant γ-decision rules. We can optimize such set of rules according to length or coverage. This paper contains also results of experiments with decision tables from UCI Machine Learning Repository.
Keywords: Partial decision rules, length, coverage, dynamic programming
DOI: 10.3233/FI-2012-735
Journal: Fundamenta Informaticae, vol. 119, no. 3-4, pp. 233-248, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl