Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: RCRA 2008 Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Article type: Research Article
Authors: Morgado, António | Marques-Silva, Joao
Affiliations: Complex & Adaptive Systems Laboratory, School of Computer Science and Informatics, University College of Dublin, Ireland. ajrm@ucd.ie; jpms@ucd.ie
Note: [] Address for correspondence: Complex & Adaptive Systems Laboratory, School of Computer Science and Informatics, University College of Dublin, Ireland
Abstract: Phylogenetic analysis is a widely used technique, for example in biology and biomedical sciences. The construction of phylogenies can be computationally hard. A commonly used solution for construction of phylogenies is to start from a set of biological species and relations among those species. This work addresses the case where the relations among species are specified as quartet topologies. Moreover, the problem to be solved consists of computing a phylogeny that satisfies the maximum number of quartet topologies. This is referred to as the Maximum Quartet Consistency (MQC) problem, and represents an NP-hard optimization problem. MQC has been solved both heuristically and exactly. Exact solutions for MQC include those based on Constraint Programming, Answer Set Programming, Pseudo-Boolean Optimization (PBO), and Satisfiability Modulo Theories (SMT). This paper provides a comprehensive overview of the use of PBO and SMT for solving MQC, and builds on recent work in this area. Moreover, the paper provides new insights on how to use SMT for solving optimization problems, by focusing on the concrete case of MQC. The solutions based on PBO and SMT were experimentally compared with other exact solutions. The results show that for instances with small percentage of quartet errors, the models based on SMT can be competitive, whereas for instances with higher number of quartet errors the PBO models are more efficient.
Keywords: maximum quartet consistency, optimization algorithms, pseudo-boolean optimization, satisfiability modulo theories
DOI: 10.3233/FI-2010-311
Journal: Fundamenta Informaticae, vol. 102, no. 3-4, pp. 363-389, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl