Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhao, Xueni; | He, Jianpeng | Zhang, Jing | Wang, Xudong | Wang, Wanying
Affiliations: College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an Shaanxi, China
Note: [] Address for correspondence: Xueni Zhao, College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an Shaanxi 710021, China. Tel.: +86 18966721309; E-mails: zhaoxueni@sust.edu.cn, vvxni@126.com
Abstract: Nanostructured calcium phosphate/collagen (CaP/COL) coatings were deposited on the carbon/carbon (C/C) composites through electrochemical deposition (ECD) under magnetic field. The effect of magnetic fields with different orientations on the morphology and composition was investigated. Both the morphology and composition of the coatings could be altered by superimposed magnetic field. Under zero magnetic field and magnetic field, three-dimensional network structure consisting of collagen fibers and CaP were formed on the C/C substrate. The applied magnetic field in the electric field helped to form nanostructured and plate-like CaP on collagen fibers. For the ECD under magnetic field, the Ca/P molar ratio of the coatings was lower than the one under B=0. This may be contributed to the decreased electrical resistance or the increased electrical conductivity of electrolyte solutions under magnetic field. The nanosized CaP/COL coatings exhibited the similar morphology to the human bone and could present excellent cell bioactivity and osteoblast functions.
Keywords: Electrochemical deposition, magnetic field, coating, collagen, carbon/carbon composites
DOI: 10.3233/BME-140995
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 5, pp. 1851-1859, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl