Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ozeki, K.; | Goto, T. | Aoki, H. | Masuzawa, T.
Affiliations: Department of Mechanical Engineering, Ibaraki University, Ibaraki, Japan | Department of Biosciences, Division of Anatomy, Kyushu Dental College, Kitakyushu, Japan | International Apatite Institute Co., Ltd, Tokyo, Japan
Note: [] Address for correspondence: K. Ozeki, Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan. E-mail: ozeki@mx.ibaraki.ac.jp
Abstract: Hydroxyapatite (HA) thin films were prepared on a zirconia (ZrO2) substrate using a sputtering technique, and the film was also coated on a titanium (Ti) substrate for comparison. The coated films were recrystallised using a hydrothermal treatment to reduce film dissolution. The films were then characterised by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The osteocompatiblity of the films was evaluated by investigating the alkaline phosphatase (ALP) activity and the size of the bone formation area of osteoblast cells. In the XRD patterns of the as-sputtered films on the ZrO2 substrate, there are no peaks except for those from the ZrO2 substrate. After the hydrothermal treatment, HA peaks appeared in the patterns. Nanoparticles (less than 20 nm) were observed on the ZrO2 substrates in the SEM images of the as-sputtered films. After the hydrothermal treatment, particles of 20–40 nm were observed on the film, whereas the HA film on the Ti substrate was covered by a larger number of globular particles (20–60 nm). In the osteoblast cell cultures, the ALP activity and bone formation area on the HA films on both the ZrO2 and Ti substrates increased after the hydrothermal treatment of the films, and the values for the ZrO2 substrate were higher than those for the Ti substrate.
Keywords: Sputtering, hydroxyapatite, zirconia, titanium, osteoblast cell
DOI: 10.3233/BME-140990
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 5, pp. 1793-1802, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl