Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Frontiers in Biomedical Engineering and Biotechnology – Proceedings of the 2nd International Conference on Biomedical Engineering and Biotechnology, 11–13 October 2013, Wuhan, China
Article type: Research Article
Authors: Xu, Jiucheng; ; | Sun, Lin; | Gao, Yunpeng; | Xu, Tianhe;
Affiliations: College of Computer and Information Engineering, Henan Normal University, Xinxiang, China | Engineering Technology Research Center for Computing Intelligence and Data Mining, Henan Province, China
Note: [] Corresponding author. E-mail: jiuchengxu@gmail.com.
Abstract: Correlation-based feature selection (CFS) using neighborhood mutual information (NMI) and particle swarm optimization (PSO) are combined into an ensemble technique in this paper. Based on this observation, an efficient gene selection algorithm, denoted by NMICFS-PSO, is proposed. Several cancer recognition tasks are gathered for testing the proposed technique. Moreover, support vector machine (SVM), integrated with leave-one-out cross-validation and served as a classifier, is employed for six classification profiles to calculate the classification accuracy. Experimental results show that the proposed method can reduce the redundant features effectively and achieve superior performance. The classification accuracy obtained by our method is higher in five out of the six gene expression problems as compared with that of other classifi cation methods.
Keywords: Feature selection, neighborhood mutual information, particle swarm optimization, support vector machine
DOI: 10.3233/BME-130897
Journal: Bio-Medical Materials and Engineering, vol. 24, no. 1, pp. 1001-1008, 2014
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl