Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pajic-Lijakovic, Ivana;
Affiliations: Faculty of Technology and Metallurgy, Belgrade University, Belgrade, Serbia
Note: [] Address for correspondence: Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia. Fax: +381 11 3370 387; E-mail: iva@tmf.bg.ac.rs
Abstract: The mechanism of micro-environmentally restricted hybridoma cell growth caused by action of local mechanical compression stress generated within various polysaccharide hydrogel matrixes is estimated by comparing the growth of hybridoma cells within (1) 1.5% Ca-alginate microbeads from Bugarski et al. [in: Fundamentals of Animal Cells Immobilization and Microencapsulation, M.F.A. Goosen, ed., CRC Press, Boca Raton, FL, 1993, p. 267] and (2) 1.3% alginate-agarose microbeads from Shen et al. [Animal Cell Technology: Basic & Applied Aspects, H. Murakami ed., Kluwer Academic Publishers, The Netherlands, 1992, p. 173]. Consideration of restricted cell growth dynamics based on developed kinetic model and kinetic 3D Monte Carlo simulation include: (1) changes the fraction of active proliferating cells in the exponential phase and (2) changes of non-proliferating cell concentration in the plateau phase. Higher value of the specific decrease of active fraction of proliferating cells κ is obtained for 1.3% alginate-agarose compared to 1.5% alginate microbeads. It corresponds to higher compression stress generated within hydrogel matrix during cell growth obtained for 1.3% alginate-agarose microbeads.
Keywords: Immobilized cells, hydrogel, local compression stress, bioprocess design, modeling
DOI: 10.3233/BME-130760
Journal: Bio-Medical Materials and Engineering, vol. 23, no. 5, pp. 361-371, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl