Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhang, Deyuan | Zhang, Zhiwei | Zi, Zhenjun | Zhang, Yanhong | Zeng, Weijun | Chu, Paul K.;
Affiliations: Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, China | Guangdong Cardiovascular Institute, Guangzhou, China | Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong
Note: [] Address for correspondence: Prof. Paul K. Chu, Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong. Tel.: +852 27887724; Fax: +852 27889549; E-mail: paul.chu@cityu.edu.hk.
Abstract: A nano-structured TiN/Ti coating with a total thickness of 0.9 μm was deposited on nitinol cardiac occluders using the filtered multi-arc vacuum ion plating technique at less than 300°C. The coating was composed of laminated TiN/Ti layers with thickness of about 100 nm. The cardiac occluders made of a nitinol mesh with and without a graded nano-structured titanium nitride (TiN) coating were implanted into the hearts of rams. The nickel concentration of the whole blood of the animals were measured one week, one month, three months, and six months after implantation and compared to that before operation. The nickel concentration in the neo-endocardium covered occluders was also measured using graphite furnace atomic absorption spectrophotometry. After one week, the nickel content in the blood increased by a factor of three compared to the level before operation and decreased afterwards returning to the normal level after six months when endothelialization was complete. Statistical analyses showed that the TiN coating could mitigate nickel release into blood (P<0.01). For example, the nickel concentration released from the control increased from about 2.65±1.20 μg/kg, the normal concentration, to 7.30±1.00 μg/kg but just from 2.56±1.16 μg/kg to 4.68±1.29 μg/kg from the TiN coated occluder after 7 days. The nickel concentration in the neo-endocardium covered and TiN coated occluders reached 17.0±8.05 μg/kg in two months after implantation. In comparison, it was 31.0±5.72 μg/kg for the occluder without the TiN coating. While normal concentration of nickel in endocardium is also 2.6±1.09 μg/kg. Our results demonstrate that the graded TiN coating can significantly reduce nickel release into the endocardium (P<0.01) under in vivo conditions.
Keywords: TiN coating, nickel release, nitinol, occluder
DOI: 10.3233/BME-2008-0555
Journal: Bio-Medical Materials and Engineering, vol. 18, no. 6, pp. 387-393, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl