Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Wiersma, Susanne | Dolan, Finbar | Taylor, David;
Affiliations: Trinity Centre for Bioengineering, Trinity College Dublin, Ireland | Medtronic AVE, Galway, Ireland
Note: [] Corresponding author: Prof. David Taylor, Trinity Centre for Bioengineering, Department of Mechanical Engineering, Trinity College, Dublin 2, Ireland. Tel.: +353 1 6081703; Fax: +353 1 6795554; E-mail: dtaylor@tcd.ie.
Abstract: Some biomedical components involve the use of materials in microscopic quantities, i.e. in section sizes which are of the same order of magnitude as microstructural features in the material, such as grains. The mechanical behaviour of the material may be different when used in these quantities, compared to its behaviour in macroscopic amounts. An example of a microscopic component is the cardiovascular stent. To ensure the integrity of the stent during deployment and subsequent use, the designer must be able to simulate possible failure modes, i.e. monotonic fracture and fatigue, and the effect of stress concentrations. We carried out tests on specimens of 316L stainless steel, with and without stress concentrations. We found a significant size effect, in which the behaviour of these microscopic specimens was different from that of larger, macroscopic specimens. Microscopic specimens had lower tensile strengths and higher ductility. Under cyclic loading, the material's behaviour at large numbers of cycles was independent of specimen size, but the microscopic specimens were inferior at smaller numbers of cycles to failure. Fatigue limits for the notched specimens could be predicted using an existing theory (the Theory of Critical Distances) but parameter values were different at the macro- and micro-scale. Thus, data from conventional, macroscopic specimens cannot be used to predict the behaviour of this material when used for microscopic components. Mechanical working and annealing strongly affected the tensile strength and ductility, but had no significant effect on fatigue behaviour.
Keywords: Strength, ductility, fatigue, stainless steel, stents, stress concentrations
Journal: Bio-Medical Materials and Engineering, vol. 16, no. 2, pp. 137-146, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl