Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 2nd International Conference on New Biomedical Materials, 5–8 April 2003, Cardiff, Wales, UK
Article type: Research Article
Authors: Tanaka, Masaru
Affiliations: Molecular Device Laboratory, Research Institute for Electronic Science (RISE), Hokkaido University, and PRESTO, Japan Science and Technology Corporation (JST), N12W6, Kita‐ku, Sapporo 060‐0812, Japan Tel.: +81 11 706 3666; Fax: +81 11 706 4974; E‐mail: tanaka@poly.es.hokudai.ac.jp
Abstract: We have reported that poly(2‐methoxyethyl acrylate) (PMEA) shows excellent blood compatibility with respect to the coagulation, complement, leukocyte and platelet systems in vitro and ex vivo when compared with other polymer surfaces. In this study, to clarify the reasons for this good compatibility, the structure of water in the hydrated PMEA were investigated and compared to water structure of poly(2‐hydroxyethyl methacrylate) (PHEMA) and polyacrylate analogs as references. The hydrated water in PMEA could be classified into three types; free water, freezing‐bound water, and non‐freezing water. Cold crystallization of water in the heating process was clearly observed at −42°C. This cold crystallization is interpreted as the phase transition from the amorphous ice to the crystal ice that belongs to the freezing‐bound water in PMEA. On the other hand, the cold crystallization peak (freezing bound water; which prevents the biocomponents from contacting the polymer surface or non‐freezing water on the polymer surface) was not observed for hydrated PHEMA and PMEA analogous polymers. We hypothesized that the freezing‐bound water layer between free water and non‐freezing water was an important factor for the excellent blood compatibility of PMEA.
Keywords: Blood compatible materials, poly(2‐methoxyethyl acrylate), water structure, differential scanning calorimetry, freezing bound water, cold‐crystallization
Journal: Bio-Medical Materials and Engineering, vol. 14, no. 4, pp. 427-438, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl