Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 2nd International Conference on New Biomedical Materials, 5–8 April 2003, Cardiff, Wales, UK
Article type: Research Article
Authors: Lewis, Andrew L. | Willis, Sean L. | Small, Sharon A. | Hunt, Stuart R. | O'Byrne, Vincent | Stratford, Peter W.
Affiliations: Biocompatibles UK Ltd, Farnham Business Park, Weydon Lane, Farnham, Surrey, GU9 8QL, England
Note: [] Corresponding author. Fax: +44 1252 732 888; E‐mail: andrew_lewis@biocompatibles.co.uk.
Abstract: A drug eluting coronary stent was developed for use in preclinical and clinical trial evaluation. The stent was coated with a phosphorylcholine (PC)‐based polymer coating containing the cell migration inhibitor batimastat. A pharmacokinetic study was conducted in a rabbit iliac model using 14C‐radiolabeled version of the drug; this showed the drug release to be first order with 94% of it being released within 28 days. Unloaded and drug‐loaded stents were implanted in a porcine coronary artery model; a number were explanted at 5 days and scanning electron microscopy was used to show that the presence of the drug did not affect the rate of stent endothelialisation. The remainder of the stents were removed after 6 months and the stents carefully removed from the arterial tissue. Fourier‐transform infrared (FT‐IR) spectroscopy (both attenuated total reflectance and microscopic imaging) was used to show the presence of the PC coating on control unloaded, drug‐loaded and explanted stents, providing evidence that the coating was still present. This was further confirmed by use of atomic force microscopy (AFM) amplitude‐phase, distance (a‐p,d) curves which generated the characteristic traces of the PC coating. Further AFM depth‐profiling techniques found that the thicknesses of the PC coatings on an control unloaded stent was 252±19 nm, on an control batimastat‐loaded stent 906±224 nm and on an explanted stent 405±224 nm. The increase in thickness after the drug‐loading process was a consequence of drug incorporation in the film, and the return to the unloaded dimensions for the explanted sample indicative of elution of the drug from the coating. The drug delivery PC coating was therefore found to be stable following elution of the drug and after 6 months implantation in vivo.
Keywords: Phosphorylcholine, coronary stent, drug delivery, in vivo stability
Journal: Bio-Medical Materials and Engineering, vol. 14, no. 4, pp. 355-370, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl