Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kalinichenko, Sergei G.a; | Matveeva, Natalya Yua | Kostiv, Roman Yea | Edranov, Sergey S.a
Affiliations: [a] Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok, Russia
Correspondence: [*] Corresponding author: Sergei G. Kalinichenko, Department of Histology, Cytology and Embryology, Pacific State Medical University, Vladivostok 690950, Ostryakova Ave., 2, Russia. Tel.: +74232454378; E-mail: sgkalinichenko@gmail.com
Abstract: BACKGROUND:Biodegradable implant coatings promote proliferation and expression of BMP-2, VEGF, and TGF-β2 genes and enhance BMP-2, VEGF, and TGF-β2 regulatory effects at different stages of reparative osteogenesis. OBJECTIVE:To study the topography and ratio of PCNA-, VEGF-, BMP-2-, and TGF-β2-immunoreactive cells in rat femoral bone after closed fracture and implantation of titanium implants with biodegradable calcium phosphate and hydroxyapatite coatings. METHODS:Standard titanium implant screws and similar implants with bioactive coatings were used. A total of 18 rats were randomly divided into three groups, two experimental and a control one. The rats in the first experimental group were implanted with implants without specific coating, while those in the second group, with implants with specific coatings. The control rats were subjected to the same fracture as the experimental ones without subsequent implantation. On days 7, 14, and 30 of experiment, the rats were sampled for histological examination. Histological sections were prepared and processed for PCNA, BMP-2, VEGF, and TGF-β2 immunoreactivity. RESULTS:In the regeneration zone, PCNA-immunoreactive cells substantially outnumbered other immunoreactive cell types. During the first two weeks after fracture, in the immediate vicinity of implant surface, the rate of VEGF production increased in osteoblast subpopulations and level of TGF-32 immunoreactivity decreased in chondroblasts. The level of TGF-32 was maximum on day 30 of experiment. BMP-2-immunoreactive osteocytes were found in the zone of external general plates. They accumulated at implants with calcium phosphate coating. Their number gradually increased by day 30 of experiment. CONCLUSIONS:The present data suggest that biodegradable implant coatings promote proliferation and expression of BMP-2, VEGF, and TGF-β2 genes and enhance BMP-2, VEGF, and TGF-β2 regulatory effects at different stages of reparative osteogenesis.
Keywords: Biodegradable nanostructure materials, morphogenetic factors, bone tissue remodelling, implant coatings, osseointegration
DOI: 10.3233/BME-181035
Journal: Bio-Medical Materials and Engineering, vol. 30, no. 1, pp. 85-95, 2019
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl