Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Razavi, Seyed Esmaila | Jouybar, Mohammadb;
Affiliations: [a] School of Mechanical Engineering, University of Tabriz, Tabriz, Iran | [b] School of Industrial and Information Engineering, Polytechnic University of Milan, Milan, Italy
Correspondence: [*] Corresponding author. Tel.: +1 98 930 127 3124; E-mail: mohammad.jouybar@mail.polimi.it
Abstract: Two common abnormalities in ureters include primary refluxing megaureter (PRM) and primary obstructed megaureter (POM). The aim of this study was to represent the numerical simulation of the urine flow at the end of the ureter with vesicoureteral reflux (VUR) and POM during peristalsis. Methodologically, the peristalsis in the ureter wall was created using Gaussian distribution. Fluid-structure interaction (FSI) was applied to simulate urine-elastic wall interactions; and governing equations were solved using the arbitrary Lagrangian-Eulerian method. Theories such as wall elasticity, Newtonian fluid, and incompressible Navier-Stokes equations were used. Velocity fields, viscous stresses and volumetric outflow rate profiles were obtained through the simulation of the ureter with VUR and POM during peristalsis. In addition, the effect of urine viscosity on flow rate was investigated. When the bladder pressure increased, VUR occurred because of the ureterovesical junction (UVJ) dysfunction, leading to high stresses on the wall. In the POM, the outflow rate was ultimately zero, and stresses on the wall were severe in the obstructed section. Comparing the results demonstrated that the peristalsis leads to even further dilation of the prestenosis portion. It was also observed that the reflux occurs in the ureter with VUR when the bladder pressure is high. Additionally, the urine velocity during the peristalsis was higher than the non-peristaltic ureter.
Keywords: Primary obstructed megaureter, ureterovesical reflux, Arbitrary Lagrangian-Eulerian, fluid-structure interaction, Navier-Stokes equations, moving mesh
DOI: 10.3233/BME-181026
Journal: Bio-Medical Materials and Engineering, vol. 29, no. 6, pp. 821-837, 2018
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl