Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ghasemi, Abbas; * | Hashemi, Babak
Affiliations: Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
Correspondence: [*] Corresponding author. Tel.: +98 917 262 6289; Fax: +98 21 884 98 824; E-mail: abbasghasemi@alum.sharif.ir.
Abstract: The purpose of this study is to analyze the co-existence effect of 30 wt.% TCP-BG phases on degradation and precipitation behaviors of PLLA based composite scaffold in biological media. First, phase separation method was used to synthesize of the pure PLLA and the trinary composite scaffolds, and second they were immersed in SBF solution for 45 days. Subsequently, the degradation and precipitation characteristic were investigated by analyzing of pH value and weight changes of the immersed samples, the ability of biological products formation and the change of relative molecular weight of PLLA matrix as function of the degradation time. Finally, the experimental data of relative molecular weight change were verified by Han and Pan model and comparisons were made between them. Results have represented precipitation of huge amount of carbonate apatite on surface of the composite scaffold, and also the acidity of SBF media changes moderately which is prove better bioactivity properties compare to the pure PLLA scaffold. The results of comparison with the model point to quiet good agreement between them in early stage of degradation. So, the consequences suggest that the TCP-BG/PLLA composite scaffold have great potential to be applied in bone replacements or repairs.
Keywords: Trinary composite scaffold, bio-degradation, modelling, carbonate apatite, tricalcium phosphate, bioactive glass
DOI: 10.3233/BME-171707
Journal: Bio-Medical Materials and Engineering, vol. 28, no. 6, pp. 655-669, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl