Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Current Research Progress of Ceramic Biomaterials in Japan
Guest editors: Kimihiro Yamashita and Masayuki Okazaki
Article type: Research Article
Authors: Suzuki, Kitaru | Nagata, Kohei | Yokota, Tomohiro | Honda, Michiyo | Aizawa, Mamoru; *
Affiliations: Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
Correspondence: [*] Corresponding author. Tel.: +81 44 934 7237; Fax: +81 44 934 7906; E-mail: mamorua@meiji.ac.jp.
Abstract: Background:There is a strong impetus for the development of alternative treatments for bone disease that avoid the complications associated with autografts and allografts. To address this, we previously developed porous apatite-fiber scaffolds (AFSs) which have three-dimensional interconnected pores, and constructed tissue-engineered bone by culturing rat bone marrow cells (RBMCs) using AFSs in a radial-flow bioreactor (RFB). Objective:To generate additional baseline data for the development of tissue-engineered bone constructed for clinical application using a RFB, we cultured RBMCs using AFSs under static conditions (hereafter, RBMC AFS culture), and monitored RBMC growth and differentiation characteristics in vitro, and two weeks after subcutaneous inoculation into recipient rats. Methods:RBMCs were seeded to AFSs and growth, differentiation and calcification were monitored in vitro and in vivo by histological evaluation using hematoxylin eosin, alkaline phosphatase and alizarin red S stains. Results:RBMCs in/on AFSs proliferated and differentiated normally in vitro and in vivo, and calcification was evident two weeks after subcutaneous AFS culture implantation. Histological assays revealed that AFSs and RBMC AFS cultures were biocompatible, and did not induce inflammation or immunological rejection in vivo. Conclusions:These findings suggest that AFSs are a conducive microenvironment for bone regeneration and are well tolerated in vivo. The results provide valuable baseline data for the design of implant studies using tissue-engineered bone constructed by RFB.
Keywords: Hydroxyapatite, apatite-fiber scaffold, rat bone marrow cells, histological evaluation, tissue-engineered bone
DOI: 10.3233/BME-171656
Journal: Bio-Medical Materials and Engineering, vol. 28, no. 1, pp. 57-64, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl