Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Qi, Yuxin | Lewis, Gladius; *
Affiliations: Department of Mechanical Engineering, The University of Memphis, Memphis, TN 38152, USA
Correspondence: [*] Corresponding author: Gladius Lewis, Department of Mechanical Engineering, The University of Memphis, 316 Engineering Science Building, Memphis, TN 38152, USA. Tel.: +1-901-6783266; Fax: +1-9016785459; E-mail: glewis@memphis.edu.
Abstract: Background:Although cervical total disc replacement (TDR) is becoming popular, there are no finite analysis (FEA) studies involving a model of the full spine cervical (C1–C7) and determination of the influence of materials assigned to different parts of a specified TDR design on biomechanics of the model when TDR implantation is simulated. Objective:To determine the influence of assigned material combination, for a given cervical TDR design, on the kinematics of a model of the full cervical spine. Methods:A three-dimensional solid model of the full cervical spine was constructed, a finite element mesh was obtained (INT Model), after which FEA was used to determine range of motion (ROM) at each of the intersegmental positions under three clinically-relevant loadings. INT model was then modified by simulated implantation of a notional endplates-and-mobile insert TDR design, at C5–C6 (TDR Model), and six clinically-relevant applied loadings were applied. Four variants of TDR Model were used, the difference between them being in the materials assigned to the endplates and the mobile insert. Under each of the loadings, principal motions at each of the intersegmental positions were determined and compared to counterpart motions when INT Model was used. Results:Comparison of ROM results of INT Model with relevant experimental results reported in the literature showed that the model was validated. With TDR Model, the smallest overall mean of the absolute values of the % change in principal intersegmental motions (relative to corresponding results in INT Model) was when the material assigned to both the endplates and the mobile insert was poly(ether-ether-ketone). Conclusion:In a simulated implantation of a notional endplates-and-mobile-insert TDR design in a model of the full cervical spine, material combination assigned to the parts of the design exerts a marked influence on the kinematics of the model.
Keywords: Cervical spine, total disc replacement, FEA, range of motion
DOI: 10.3233/BME-161614
Journal: Bio-Medical Materials and Engineering, vol. 27, no. 6, pp. 633-646, 2016
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl